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Abstract 

This paper presents a low-power VLSI neural processor that has been developed for high- 

speed vision processing based upon the frequency-sensitive self-organization (FSO) 

neural algorithm. Performance of this self-organization neural algorithm is proved to be 

efficient for adaptive vector quantization and can achieve near-optimal results. A 

system-on-chip design of the whole FSO neural system is described. Analysis of non-idea 

semiconductor effects on the FSO neural system chip design is presented. The 

prototyping chip for a 5 12-member competitive processor, which is a key functional unit 

of the FSO neural system, has been designed and fabricated in a 0.25-micron SO1 CMOS 

technology via the MIT Lincoln Lab. It occupies a silicon area of 1 .O mm x 1 .O mm. It 

operates at 50 MHz and consumes about 10 mW.  The competitive processor provides a 

computing capability as high as 25 giga-operations per second. 

1. Introduction 

The fundamental theory of self-organizing neural networks was presented by 

Grossberg [l], Kohonen  [2], and other researchers [3,4]. One major challenge of using a 

basic self-organization neural network is that some of the neural units may be under- 

utilized. The frequency-sensitive self-organization (FSO) method has been proposed to 

address this problem and proved to be effective to produce near-optimal results [5,6]. 

The frequency-sensitive self-organization method modifies Grossberg's variable- 

threshold competitive learning method  by applying a winning frequency and its 
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associated  upper-threshold value to the centroid-based  learning rule. It systematically 

distributes the codevectors in the vector  space Rn to  approximate the unknown 

probability density function of the training vectors.  Codevectors quantize the vector 

space  and converge to cluster centroids. 

The FSO method  has  been  proved to be  very efficient and  can achieve near- 

optimal results for high-speed image compression  and pattern recognition which adapting 

to the changing-source data statistics [5,6].  The popular  LBG algorithm is difficult to 

implement  for adaptive image  compression  and  pattern  recognition  because it requires 

that the entire training data  be  processed  in a batch  mode [7]. 

In this paper, the frequency-sensitive self-organization  neural  network  and  its 

associated VLSI processor  for  high-speed vision processing applications is presented. 

Section 2 describes the self-organization  neural  network  algorithm  and data flow. 

Section 3 presents a massively  paralleled  VLSI  neural  processor to implement this 

algorithm. Section 4 discusses the  non-idea effects on the neural  network  processor 

implementation. Section 5 presents  the  prototype chip and  experimental  results.  The 

conclusion is given in Section 6 .  

2 The Frequency-Sensitive Self-organizing Neural  Network 

The FSO neural  algorithm is illustrated  in Fig. 1 and  described as follows: 

Step 1 : Initialize the codevectors Wi and the winning  frequency Fi for each distortion- 

computing neuron: 
Wi(0) = R(i), (1.1) 
Fi(0) = 1, i =  1, ..., N 

where R(.) is a random vector-number  generation function, A4 is the number  of  vector 

components, N is the number  of  codevectors,  and 

Wi(0) = [wi wi 2(0)~ wi do) ] .  Notice that the first N input  vectors can also be 

used as the initial codevectors instead  of  using  results  generated  from R(.). 

Step 2: Compute the distortion oi(t) between  an  input  vector X(t) and  all codevectors: 
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where t is the training vector index. 

Step 3:  Select the distortion-computing neuron  with the smallest distortion and set its 

output oi(t) to high: 

Step 4: Update the codevectors with a frequency-sensitive training rule and the associated 

winning frequency: 

Wi(t+l)  = W,(t) + S(t)  O,(t)[X(t) - Wi(t)] (1.4) 

Fi(t+l) = Fi(t) + Oi(t) (1  -6)  
where S( t )  is the frequency-sensitive learning rate, and Fth is the upper-threshold 

frequency. Notice that only the winning codevector is updated. The training rule moves 

the  winning codevector toward the training vector  by a fractional amount which 

decreases as the winning frequency increases. If Fi is larger than Fth, then set S( t )  to 

zero  and  no further training will  be  performed for this neural unit. 

Step 5:  Repeat Step 2 through Step 4 for all training vectors. 

Use of the upper-threshold frequency can avoid codevector under-utilization 

during the training process for an inadequately chosen initial codebook. The selection of 

the upper-threshold frequency is heuristic and depends on source data statistics and 

training sequence. Empirically, an adequate Fth is chosen to be two to three times larger 

than the average winning frequency. The performance of the one-iteration FSO method 

can  be incrementally improved by  using iteration to adjust codevectors into better cluster 

centroids. The codebook obtained from  the previous iteration is used as the initial values 

of the current iteration. After the first iteration, the upper-threshold frequency is  not 

needed, because a good initial codebook is available. This method is called the multiple- 

iteration FSO method. 

In the LBG method, the initial codebook  could  be obtained from the splitting- 

2 algorithm. The iteration of grouping and calculating centroids in the LBG method is 

similar to that of updating the closest codevector for each incoming data vector through 

the centroid technique in the FSO method. Therefore, the iterating FSO method  without 
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the use of upper-threshold frequency asymptotically approximates the LBG method. If 

the learning process in  the FSO method is repeated with the same termination criterion 

for the LBG method, the result of the multiple-iteration FSO method appears very close 

to that of the LBG method. 

Fmquency-Sensitive  Self-Organiation  Neural Learning Rule 

Wj(t+l) = W i t )  + S(t) O&)[X(t) - Wit ) ]  

I F,(t+l) = F,(t) + Oi(t) I 

Winner-Take-All i f  D i ( t ) <  D J t ) ,  l i i  , j I N ,  i o  j ,  
Layer oXt)= & othenvise . 

Figure 1: The frequency-sensitive  self-organizing  neural  network. 
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3 A System-on-Chip Design of the Self-organizing Neural  Processor 

A functional block diagram of the FSO  neural  system is shown in Fig. 2. By 

using the massively paralleled neural computing paradigm  and the mixed-signal deep 

sub-micro technology, the whole neural computer can be  implemented  on a single VLSI 

chip. A system-on-chip (SOC) architecture design of the FSO neural system  is  shown  in 

Fig. 3. This FSO neural chip can be an embedded  neural computing engine to 

upgrade a general-purpose microcomputer into a supercomputing system for various 

high-speed intelligent information processing applications. A mixed-signal VLSI design 

technique is used for the FSO neural processor chip. The analog circuitry performs 

massively paralleled neural computation and digital circuitry processes multiple-bit 

address information. 

The FSO neural processor chip realizes a full-search vector quantization 

process for each input vector at a time complexity O(I). It consists of the input neurons, 

programmable synapses, summing neurons, winner-take-all cells, and an index encoder. 

The programmable synapse matrix is composed  of M x  N synapse cells, which 

correspond to N M-dimensional codevectors. The output neuron array is composed  of N 

summing neurons, which perform paralleled summation of the distortions between  the 

input vectors and codevectors. The winner-take-all block consists of N competitive 

circuit cells, which perform paralleled comparison among N inverted distortion values 

and choose a single winner. This block also provides a sufficiently high output level  for 

the winning neuron against the rest. The index encoder circuit is an N-to-n decoder that 

uses  binary codes to encode N classes. 
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4. Analysis of Non-ideal  Effects on the FSO Neural  System 

Fundamental limitations of analog  neural  computing are caused  by  non-ideal 

factors such as the process variation, transistor mismatches,  and offset voltage.  Several 

effects that determine the dimensionality  of the network  with the 8-bit accuracy  are 

analyzed. 

4.1. Effects  of Device Variations on Neural  Network  Dimensionality 

The operation of the network is restricted by the variations of device 

parameters such as process non-uniformity  and  transistor  mismatches  in  synapse  matrix. 

To  consider the effect of the parameter variations of  devices  on the processing  accuracy, 

two columns are considered among the synapse matrix. In  two columns, all  pairs of two 

synapse values are assumed to be the same except for  one  pair  of synapse values  as 

follows: 

W1 = W 2 i  = Wi for all i and iz k .  (4.1) 
The summed output current in each column is expressed  from Eq. (9) as 

M 
I l = I l k +  I1i 

i'l,  i#k (4.2) 
and 

The difference of these two currents is 

Iout I1 -I2=Ilsb f I ,  , 

and 
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Here, Ihb is the current determined from the desired synapse values, while IA is the 

current due to the variations of the device parameters. Ideally, if there are no  parameter 

variations in the devices, then IA is zero and the difference current can be determined 

only from I M .  In practice, the absolute current value determined from the desired 

synapse values must be larger than that due to the device parameter variations. That is, 

IIlsbsbl > IId. (4.7) 

Considering the following conditions: 

a l k  = a 2 k  = ao, ali = ao( 1 + A I ,  a 2 i  = ao( 1 - A),  

then Eqs. (4.5) and (4.6) become 

and 

respectively. For illustration purposes, assume that all inputs are to be  matched to their 

weight values in the post-training process so that 
X i  - W i  = Vm.for all i . (4.10) 

Then the number of the possible inputs is determined as 

(4.1 1) 

In the case of 8-bit accuracy computation, the  minimum difference of the 

synapse value is VFS 1 z8. VFS is the full-scale dynamic range. The number of possible 

inputs in Eq. (4.1 1) is shown in Fig. 4 with respect to Vm. If the variation is within 1 %, 

then the 8x8 input can be applied with the matching  between input and synapse values of 

1%  of the full dynamic range. 

4.2. Effects of  Parasitic  Resistance on the Number of the WTA Cells 

One of the main sources to restrict the number  of the WTA cells to be 

connected side by side is the resistance along the common signal line. An analysis of the 

parasitic-resistance effects on the number of the WTA cells is given in this section. 
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Through the common signal line, the  input currents are redistributed and 

compared one another. In general, the common signal line is  made of the metal, of  which 

sheet resistance is very small. However, the length of this line is so long that the 

resistance value cannot be  ignored  when the connected  number  of cells are large and 

comparison occurs between two far ends of this line. The voltage drop across the 

common signal line causes the gate-to-source voltage of each input transistor to be 

different although the applied input voltage is the same. 

To analyze the effect of this finite resistance value along the common signal 

line on the number of the cells, simple model is introduced in Figure  4,  where each cell  is 

represented by the equivalent current source. The current flowing through each cell is IB 

for the state of equilibrium. When  an input voltage is applied to all cells, the current is 

represented by 

$ =  I B + d .  
J 

with the condition of 

d,=O 
N 

i= 1 
Y 

(4.12) 

(4.13) 

where N is the number of the competing cell. If  the largest input voltage is  applied to 

cell-1 as the winning input, then the difference of  the  input voltages between this cell and 

cell-i is expresses as, 

where p = p C,, (W/L) and R is the  unit resistor value of the common signal line between 

two adjacent cells. The first term in (4.14) is the voltage difference for the different 

current assuming the perfect match of two cells. The second term in (4.14) is the  voltage 

drop along the common line from cell-1 to cell-i, which is zero for the ideal case. Thus, 

for the proper WTA operation, the magnitude of the first term must  be larger than that  of 

the second term. In Fig. 5 ,  the above two terms are shown for the two ends of cell-1 and 

cell-N given the following conditions: 

I ,  = IB + (9) d 
Y (4.15) 

... 
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... 

L Y 

... 

and 

(4.16) 

(4.17) 

(4.18) 

where A is 80 nA. From the process parameter, the sheet resistance is known to be 0.026 

R per square and there are 14 squares in  the common signal line of each cell from the 

layout. About 600 cells can be connected in series as a row. Connecting raws in parallel 

can increase the number of the competing cells. 

4.3 Analysis of Large Number of Winner-Take-All  Cells 

Let the inputs with the same input voltage level are assigned into groups 1 

through L. The group i has ni elements. The current flowing through each cell in group i 

is 

The total bias current is distributed in  the following way: 
L 

n i I i = N I b  
j =1 

and 
L 

N = C  ni 
j = 1  

(4.19) 

(4.20) 

(4.21) 

where N is the number of competitive inputs, and IB is the bias current flowing in 

transistor A45 of each cell. When the input voltage to thej-th group is the largest, the 

number of cells in thej-th group should  be one and the current flowing in this cell, 9 ,  
should be larger than the current flowing through a single cell in any other group to 

ensure the winner-take-all operation, 

Ii > max ( I i  , i =  1, 2, ..., L ,  and i+j)  (4.22) 
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or equivalently 
vi > max (Vi  , i = 1 ,  2, ..., L, and i +j).  (4.23) 

To facilitate the analysis of this WTA circuit in a large network, the following 

conditions are assumed. There are three groups of input voltages: the winning voltage 

Vw, the second largest input voltage V,, and the smallest one V,. The numbers of cells in 

these groups are 1 , L, and N-L-1, respectively. From Eq. (4.19), the current flowing 

through a single cell in each group can be expressed as 

(4.24) 

and 

I, = 2 ( V,- VCM - V,h)2. P1 

The total current is 

I total = 1 X Iw + L X IL + (N-L-1) X 1s. (4.25) 

In Fig. 6, calculated results for a 1000-input WTA circuit are shown. Vw, VL , 

and V ,  are set to 2.51,2.50, and 2.49 V, respectively. As the  number of the second 

largest input increases, the current flowing into the  winning  cell decreases monotonically. 

This results from the fact that more current is consumed  by  the cells in the second group, 

while the total bias current is constant. In Fig. 6(a), calculated results of the output levels 

are shown. In Fig. 6(b), the response time of the winning output voltage is shown. The 

output level of the winning cell decreased due to the  reduced available current. Similarly, 

the response time of the circuit increased, because the  amount  of charging current was 

reduced. 

In the case where the differences between competitive inputs are small, the 

performance of the WTA circuit can be degraded severely. The resultant input current  in 

the winning cell is not large enough to  be completely differentiated from all losing cells. 

Thus, the output voltage difference between the winning  and  losing cells is not large 

enough to be directly interfaced with the digital index encoder, because the winning cell 

output has intermediate value between 0 and 5 V. Although the winning output is still 
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larger than any other output, the response time for the above  condition is quite long. 

More charging current is consumed  by the transistor M3 (Fig. 7), which is now biased  in 

the linear region. To circumvent these problems, a cascaded  version of the winner-take- 

all  circuit  can  be used. 

Number Oi Inputs. M 

1 

Malchlng Vollage V, = X I -  WJt 

Fig. 4 The  number of the  possible  dimensionality  versus the 

matching voltage with different  device  variations. 

N-cell WTA circuit 

N-cell WTA circuit 
I . 1 

I 
I 2 common 

I signal  line 

a 
0 common f 
a signal  line 

Fig. 5 Simple  model of the winner-take-all  circuit. 
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( 4  (b) 
Fig. 6 Calculation  results on a  1000-input WTA with different numbers of 

cells having the  second  largest input voltage value. 

(a) DC level of the winning  output. 

(b) Response  time of the winning output. 
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5 VLSI Prototyping Chips for the FSO Neural  System 

5.1. A VLSI Prototype Chip for the FSO Neural  System in a Scalable Bulk 

CMOS Technology 

A VLSI prototype chip for the FSO neural processor was fabricated in a silicon 

area of  4.6 mm x 6.8 mm using the scalable bulk  CMOS technology from the MOSIS 

Service of the USC/Information Sciences Institute at Marina del Rey, CA [5]. This 

prototype chip includes 25 input neurons, 25 x 64 synapse weight cells, 64 output 

summing neurons, 64 winner-take-all cells, and a 64-to-8 membership encoder. The  die 

photo of this FSO neural chip is shown in Fig. 7. This chip can also be extended to 

implement a large-scale FSO neural system. An adaptive vector quantizer of 1024 

codevectors can be implemented by cascading 16 such prototype chips or  by  using a 

larger design in a submicron fabrication technology. 

Fig. 7 A chip photo of the FSO neural system prototype chip in a scalable 2-micron bulk 

CMOS technology. The die size is  4.6 mm x 6.8 mm. 
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5.2. A VLSI Prototype Chip for the  512-member  Winner-Take-All  Competitive 

Processor of the FSO Neural  System  in a 0.25-micron SO1 CMOS 

Today’s complex integrated circuits are fabricated almost exclusively in CMOS 

on standard silicon substrates. The availability of inexpensive, high-quality silicon wafers 

and rich manufacturing experience, favor standard  CMOS for most applications. 

However, the migration toward smaller transistor dimensions, the need to decrease power 

dissipation, and a desire to combine sensitive analog circuits with complex digital 

circuits, has spurred interest in alternatives to standard CMOS technology, such as SOI. 

With SO1 technologies, circuits are fabricated in a very thin layer of silicon on  an 

insulating substrate, or in a thin layer that  is electrically insulated  from a solid silicon 

substrate. Compared with bulk  CMOS process, where the conductive silicon substrate 

contributes large parasitic capacitance, SO1 technology is free from this major drawback. 

This provides the advantage of lower power consumption and higher operation speed. 

Furthermore, the reduced junction area and the absence of  body effect provide the 

advantage of increased performance at low voltage. It has been proven in many circuits 

that SO1 is a good candidate for low power, low voltage,  and  high performance 

applications. In order to exploit the low power  and high-speed application, an SO1 

fabrication process has been selected. The fabrication technology chosen to implement 

the FSO neural processor is  MIT/LL 0.25um low power SO1 process. This is a fully 

depleted silicon-on-insulator CMOS process with  single  level poly, and triple level  metal 

with stacked vias. 

The existing 2-micron-bulk-CMOS FSO neural chip (4.6 mm x 6.8 mm)  can  be 

converted into a 0.25-micron-SOI-CMOS FSO  neural chip at a size of 2 mm x 2mmm. 

Due to limitations of the allocated chip area (i.e. 1 mm x lmm), the 5 12-winner-take-all 

competitive processor is therefore selected for the SOI-CMOS chip implementation. This 

5 12- winner-take-all competitive processor is a major  building  block for the low-power 

large-scale FSO neural system. 
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5.2.1.  Winner-Take-All Circuit Design  and  Simulation 

A transistor-level diagram for the WTA circuit is shown in Figure 8. Each WTA 

cell consists of two identical cascaded stages (upper and lower stages). In each stage, the 

first portion (MI, M2, and M3) converts input voltage into the cell current, which is 

compared and redistributed along the common signal node, Vcml. Each cell current, 

is proportional to the square of the corresponding input voltage, V,,,:. The  largest  input 

voltage can therefore result in the largest amount of cell current. In the second portion 

(M4, Ms), the cell current, In,ml, is mirrored to transistor Mq and then converted into 

output voltage. If one of the input voltages, e.g. is sufficiently larger than other 

inputs, the output voltage, Voui,n, will saturate to the positive supply voltage while the rest 

will saturate at the negative rail. The binary output signals provide great advantages in 

interfacing with subsequent digital circuitry. The two-stage cascaded scheme provides 

better amplification and improves the WTA comparison resolution, also results in a 

higher speed operation. 

The simulated result for a cascaded-WTA is shown in Figure 8. This circuit 

consists of two comparison cells, each with an estimated output load capacitance of 0.1 

pF. At Vdd of 2 V and input (Vinz) frequency  of 50 MHz ( Vinl is  held at a constant 

voltage), VOut2 approaches positive rail as Vin2 greater than V,,,l, while VOut2 goes to 

negative rail, as shown in the simulation result. 

The performance of the WTA circuit built with transistors biased in the 

subthreshold region [8] is moderately limited due to the inherently low-speed operation 

and small noise immunity. Our modified WTA circuit operates in a strong inversion 

region and can provide fully binary output values that are easily interfaced with digital 

circuitry for network learning. Our analog WTA circuit can determine the winning cell  at 

one cycle, instead of  log2N clock cycles using  MAXNET [9]. 

5.2.2. A Layout Design for the  512-Cell  Winner-Take-All  Competitive  Processor 

To fully test the 5 12-cell WTA circuit, it would  require at least 5 12 input/output 

signals and other biasing supplies, which is not area-efficient in this chip implementation. 
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To reduce the required pad numbers, the whole WTA circuit is carefully grouped into 8 

sections based on signal flow, cell position, capacitance loading effect, and I/O pads 

position. Therefore only 20 pins are needed for this prototype chip. Since only one 

WTA cell output will be ‘high’ in each comparison cycle and the rest will be ‘low’, an 8- 

to-3 encoder is implemented on-chip to further reduce the required output pin numbers. 

Testing of VLSI neural network chips is an important task in constructing 

artificial neural systems. This winner-take-all competitive processor chip in the MIT 

0.25-micron SO1 CMOS has been designed and submitted in July 1998. Currently, this 

experimental chip is still in the fabrication process and to be delivered soon. Thus the 

experimental results will be reported after the chip is received and tested in near future. 

Vdd - 

Vcmn 
Vbiasl 

Vbias2 

vss 

Transistors (1 st  stage) 

M5 M4 M3 M2 M I  Transistors  (2nd stage) 
0.5/0.25 110.25 0.5/0.25 0.5/0.25 1 / 0 2  Size: L N  (prn/prn) 
M5 M4 M3  M2 MI 

Size: lJVJ (prnlpm) 1/0.25 0.5/0.25 0.5/0.25 1/0.25 3.75/0.25 

Figure 7. A transistor-level diagram for the Winner-Take-All circuit. 
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Figure 8. Simulation results of the modified  WTA circuit. 
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Figure 9. A chip layout design for the 5 12-member winner-take-all competitive neural 

processor in the MIT-LL 0.25-micron SO1 CMOS technology. 
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6 Conclusion 

The FSO algorithm  and its associated  system-on-chip  design  have  been 

developed for high-speed image compression  and  pattern  recognition  which  adapting  to 

the changing-source data statistics.  By  using a mixed  analog-digital  design  approach  in 

the massively  paralleled  computation  blocks, the advantages  of  small  silicon  area, low 

power  consumption,  and  reduced  I/O  requirement can be  achieved. The self-organization 

neural  network  algorithm  and its data flow are  described  in  details.  The  non-idea  effects 

on the FSO neural  network chip implementation is analyzed.  The  bulk-CMOS FSO 

neural chip was  successfully  designed,  fabricated,  and  tested.  This FSO neural chip has 

been  under an upgrade  study  and can be  easily  converted  into  a  SOI-CMOS chip at  a 

smaller size and a much lower  power.  The 5 12-member  competitive  neural  processor, 

which is one major  building  block of a  large-scale FSO neural  system,  has  been 

designed  and  fabricated in a MIT 0.25-micron SO1 CMOS  technology.  Its  estimated 

power  dissipation is about 10 mW at a  throughput  rate of 50  MHz. Its equivalent 

computation  power is about 25 giga-comparisons  per  second. 
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